
A Connectionless Grow-Only Set CRDT
Christian Tschudin, University of Basel, Switzerland

christian.tschudin@unibas.ch
Sep 7, 2022

ABSTRACT
Using a single message type, we show how to obtain an efficient con-
vergence protocol for a grow-only set CRDT (Conflict-Free Repli-
cated Data Type) although the communication channel can drop and
reorder messages at will. This permits to remove the middleware
layer that is usually required in CRDT protocols for providing reli-
able or ordered message delivery. We use the obtained grow-only set
for synchronizing a compression dictionary among peers, without
the need of addresses, membership protocols or connections. In this
paper we describe our CRDT protocol (which is a variant of a delta-
CRDT that does not have to repeatedly send the whole state), how it
can be used to bootstrap other convergent data structures and report
on first simulations as well as implementations for three different
platforms.

KEYWORDS
Conflict-free replicated data types, delta-CRDT, grow-only set, con-
straint networks, middleware, header compression, set difference
protocols

1 INTRODUCTION
In peer-to-peer networks and distributed computing, Conflict-Free
Replicated Data Types (CRDT) have been singled out as the key
ingredient that permits off-line first operations and does not require
consensus (which comes with scaling limits and introduces a depen-
dency on some central truth): with CRDTs, replicas will naturally
converge to the same state as they guarantee eventual consistency,
also implying that the synchronization sequence or communication
pattern among peers does not matter.

In practice, CRDT protocols often make use of connections in
order to reliably exchange large amounts of state or to run some

This work is licensed under a Creative Commons Attribution Interna-
tional 4.0 License.

set difference protocol, which has undesirable consequences: con-
nections require contact times of multiple round-trips; information
transfer via connections cannot exploit a medium’s broadcast capa-
bilities (as they only synchronize node pairs); connections impose
the management of auxiliary state (“connection closed”) while con-
ceptually all CRDT replicas should be “open” for updates at all time.
Our interest is in fully connectionless protocols for implementing
CRDTs.

From Delta Mutators with Large State Transfers . . .
The two classic protocols for CRDTs are either state-based or operations-
based. In the first case, which is suitable for gossip-style commu-
nications, the whole state is shipped that aggregates all changes a
replica has collected so far. In the operations-based approach, only
the actions that change a CRDT’s state need to be communicated
but this requires some middleware that provides the reliable in-order
delivery of events. A third type, delta-CRDTs, was introduced in
2015 that is also state-based but with the twist of exchanging state
changes (generated by delta mutators), except for a periodic retrans-
mission of partial or full state in order to compensate for dropped
gossip messages.

The need for periodic retransmission of potentially large state in
delta-CRDTs has the undesirable property of requiring long contact
times. For example, in a vehicular network setting, cars have only
limited message exchange opportunities while they drive by wireless
road-side units: there may even not be enough time to set up a WiFi
session and having the TCP 3-way handshake succeed when the
car already starts to move outside the reception range. Similarly,
some low-bandwidth networks like LoRa make it infeasible to use
them for large (delta-) CRDT state because that state has to be
retransmitted over and over again, potentially using up all available
transport capacity.

One way to mitigate full state exchange is to run a “set difference
protocol” where two peers first identify their differences in the stored
state and then run a reconciliation protocol. Since the early peer-to-
peer networks of 2000, many such protocol have been proposed and
studied e.g., [5]. While these approaches look promising for reducing
contact time, the above paper for example requires a reliable TCP
connection between peers. This point-to-point pattern excludes any
gain that would be possible in a wireless broadcast media, forcing
each pair of peers into redundant dialogues.

. . . to fully Connectionless and Incremental Updates
Our goal is to have a CRDT protocol that does not require any
kind of connection, nor peer addresses (e.g. needed to run TCP),
nor middleware that would have to do bookkeeping for delivering
updates in the right order. Instead, we wish that changes to the CRDT
propagate in a wave-like fashion whenever peers get into contact,
incrementally updating the nodes that the wave encounters and using
as few data packets as possible. We designed such a connectionless

Sep 7, 2022 Christian Tschudin, University of Basel, Switzerland

protocol for the grow-only set CRDT that reduces the minimum
contact time to roughly one round trip i.e., well below a “connection
threshold”: it maps the three tasks of reliability (using ARQ), the
set difference computation and the set reconciliation into a single
message type where no other signaling or ACK messages are needed.

Use Case and Implementation: Compression
Our use case for such a grow-only set CRDT with minimal commu-
nications requirements is the compression of messages of a second-
level set difference protocol. Specifically, we apply it to sets of 32
Byte identifiers and use the sets as compression dictionaries. Such
a dictionary allows a peer to refer to any of the long identifiers by
using an index value of a few bytes at most, resulting in a ten-fold
compression gain. Moreover, we can name the current state of the
grow-only set and use this name as a prefix for all compressed pack-
ets such that these packets always are decompressed with the right
dictionary. We applied this technique to the decentralized Secure
Scuttlebutt gossip replication protocol [6] (SSB) where the append-
only logs are identified by long ED25519 public keys. We have
implemented our compressed replication protocol for three differ-
ent platforms (ESP32, Kotlin, Python) and can now replicate SSB
logs over a wireless and addressless LoRa mesh network with data
packets as small as 128 Bytes.

1.1 Contributions
Drawing an arc from CRDTs to data packets and back, one can
say that the delta-CRDT approach compresses the state transfer by
shipping mutator-generated deltas and our grow-only construction
replaces the periodic partial or full state transfer by an on-demand
“set difference and reconciliation exchange”. Together they can be
used as an incremental, connection-less convergence protocol for
replicated compression dictionaries that permit to compress repli-
cation protocols for higher-layer CRDTs. The contributions of this
paper are:

• the description of a connectionless convergence protocol for
grow-only sets
• that requires only minimal contact time of roughly one round-

trip
• that is incremental (ideally, only novel state is transmitted,

not already known state)
• yet works with lossy and reordering channels
• that does not require peer identifiers (peers are anonymous)
• that can be used for compressing other convergence protocols
• and that has been implemented for low-bandwidth wireless

mesh networks.

2 RELATED WORK
State-based (also called convergent) and operations-based (also
called commutative) replicated data types have been introduced
around 2010, see for example the comprehensive study by Shapiro et
al from 2011 [8]. State-based CRDTs are well suited for gossip style
communication as long as messages cannot be lost. Beside having to
send with each update the full state of the CRDT, another drawback
of convergent CRDTs is that it may be necessary to keep track of
the replica instances e.g., reserve a dimension for each replica in the
vector that encodes a convergent integer register.

𝛿-CRDTs have been introduced in 2015 by Almeida et al [1]
as a way to avoid sending the full state: delta mutators compute
state changes that are collected and sent as change sets. However,
mechanisms must be in place to recover from message loss. In [1]
this is achieved by periodically sending the full state. An improve-
ment is presented in [4] that features two strategies: avoid back-
propagation/BP, and remove redundant state/RR. The BP strategy
requires additional bookkeeping regarding which replica introduced
a change, while RR suppresses the ingestion (and thus popagation)
of those part of an update that have already been forwarded. Their
system still relies on connections (“for simplicity of presentation”)
or requires to keep track of per-peer acknowledgment numbers. In
our system, replicas are anonymous and no origin nor neighborhood
state has to be maintained.

Optimizing state transfer in peer-to-peer networks (but also ear-
lier, for example in the times of the Palmtop handheld device), is
closely related to set difference protocols. The challenge is to mu-
tually compute the number of differences that two sets have and to
identify the specific elements that have to be exchanged in order
to synchronize the sets. An early paper is from Byers et all from
2002 [3]. A “synopsis structure” called “difference digest” is used
in the paper “What’s the difference?” by Eppstein et al in 2011 [5]
for extracting the set of keys that differ between machines. Although
the computation of the set difference using Bloom filters can happen
in a single communication round, later on a reliable connection (and
thus long contact times) is necessary to transfer the differences.

Suitable for large data sets, set differences can also be computed
through homomorphic hashing, the hash values being digests with
special properties. The idea has been expressed already in 1994 by
Bellare et al [2] where the task is to compute, out of the hash of
a large data set and some small input, the hash of the combined
set without having to recompute the hash of the large set from
scratch. A property of homomorphic hashing is that given the hash
of two sets one can directly compute the hash of the difference set
without knowing its elements. In 2019, Lewi et al [7] from Facebook
published their library for homomorphic hashing as open source
code and uses the technique to securely propagate updates instead
of replicating the full data of large data sets. Although we share the
spirit of incremental operations, our interest is in a more lightweight
mechanism that trades cryptographic complexity (and hash values
of multiple KBytes) for an iterative approach and small hash values.

Scuttlebutt is the name of a general algorithm for gossip-based
set reconciliation [9] while Secure Scuttlebutt (SSB [6]) is the name
of a specific system for disseminating cryptographically protected
append-only logs. SSB can be seen as a special case of Scuttlebutt
in that each participant works with only one key for which they
produce new versions of a single value, which is their append-only
log. Common to both is the use of anti-entropy gossip protocols for
replication and the use of version numbers (= sequence numbers in
case of the append-only logs). In this paper we aim at speeding up
these replication protocols i.e., compressing the representation of
the keys that are included in the exchanged digests. While it seems
that we work below these two replication layers, synchronizing the
directory of abbreviations is a replication task by its own right. What
differs in our way of exchanging digests is that we do not make
use of version numbers. Instead, our digests (called “claims”) are
a direct fingerprints of a replica’s content, or part of it; moreover,

A Connectionless Grow-Only Set CRDT Sep 7, 2022

unlike both Scuttlebutt instances, there is no identification of replica
holders.

3 THE SCUTTLESYNC PROTOCOL
We assume a set of keys of equal length and of sufficient orthogo-
nality such that one key cannot be the result of XOR-ing other keys.
Typically, cryptographic public keys satisfy this requirement; alterna-
tively, arbitrary values can be turned to the desired keys using hash-
ing, given that the values are varied enough; finally, pre-allocated
keys can be envisaged where only one distinguishing bit is set, at a
different position for each key.

The set of such keys is to be replicated over a network of trusted
nodes with arbitrary and potentially changing topology. New set
members can be added at any time to any of the anonymous replicas.
Nodes can enter and leave data exchange proximity at any time where
we assume that they remain in contact long enough such that at least
one request/reply exchange can take place. Our goal is that when two
nodes come into proximity, or several nodes become reachable in a
broadcast domain, such short encounters will be sufficient to let the
replicas converge. This section describes the ScuttleSync Protocol
that implements the desired convergent grow-only set data structure.

3.1 Local Data Structure and “Claims”
Nodes store their set replica as a sorted list of keys. Without loss
of generality we assume that there are at least two keys in the local
set (see further down how to handle the case of zero or one key).
Figure 1 shows the sorted list of keys as well as a “claim” for a span
of this list. Claims are assertions about a node’s local replica: they
expose a property of a span of the local set. Specifically, a claim for
a given span is a tuple that contains four fields:
• the bits of the smallest key in the span (𝐿 for ’low’)
• the bits of the biggest key in the span (𝐻 for ’high’)
• the bit-wise XOR of all keys between 𝐿 and 𝐻 , theses keys

included
• the size of the span

The ScuttleSync protocol uses only one message type which
represents one claim. The following section describes the protocol
logic governing when such claims shall be sent and how a node
reacts to a received claim. Afterwards, the protocol is shown in
algorithmic form followed by a discussion.

3.2 Informal Description of ScuttleSync
Claims are either sent opportunistically or as a reaction to a received
claim.

Opportunistic means that nodes periodically send a claim that
covers their whole set, which is especially useful in a broadcast
setup where that claim can be picked up by any node that happens
to be part of that domain. Also when two peers meet (e.g., coupling
via some nearfield communication or a cable), opportunistic claims
can and should be sent although this can be delayed for any reasons
(energy conservation, bandwidth considerations).

Reactive claims are used to narrow down and reconcile set differ-
ences. They typically cover a smaller span than full sets. There are
only a few scenarios to consider that are based on a comparison of
(a) the received claim with (b) the claim that results from plugging
in the received claim’s values and apply it to the local array of keys.

claim =

H

L

} +

0

N−1 sorted list of

set elements

(keys)

<L, H, xor(L..H), i − i + 1>
H L

Figure 1: A claim about (a subset of) the ordered list of keys.

First, we locate the received claim’s 𝐿-field in our set. If our set
does not contain 𝐿, we add it. Same goes for 𝐻 . Afterwards, the set
of keys is sorted again. Next we retrieve the indices both for 𝐿 and
𝐻 which gives us the size of the span. We then compute the XOR
of all keys in that local span and compare it to the received claim as
follows:
• If the received claim matches our own set, no reaction is

required. In all other cases, the XOR sums will differ. We
continue by examining the sizes of the two spans (ours and
the received one).
• If the received claim covers a bigger span, we send our freshly

computed “counter claim”, exposing that we lack one or more
keys.
• If the received claim has a smaller span, we can help out: first,

we shrink the received span (because the received boundary
keys are known to the sender) and split this reduced span in
two roughly equally sized spans, compute the claims for them
and send these two counter claims back-to-back. This will
help the other side to react on the subspan(s) where one or
more keys are missing.
• When the span of the received claim has the same size as in

our set (and the XOR sums differ), there must be a mutual
difference where each side has some keys which the other
side does not have. As in the previous case we narrow the
subsequent reconciliation discussion by replying with two
claims, each covering one half of the shrunk span.

The effect of these rules is that in each exchange the other side
always learns something, leading to a termination of the chain of
reactive claims: when for example the two back-to-back counter
claims return (and the set difference is just one key), then one of
them will match and therefore not trigger a re-reaction, while the
other counter claim indicates a narrower span with a discrepancy,
which triggers a counter-counter claim of reduced span size. Roughly
speaking this means that a one key difference is found in 𝑙𝑜𝑔 𝑛

exchanges where 𝑛 is the set size.
Algorithm 1 gives a more precise formulation of the protocol

logic for reactive and opportunistic claims and also contains hooks
to prevent “NACK storms”. Empty sets are handled by the node

Sep 7, 2022 Christian Tschudin, University of Basel, Switzerland

being completely silent, waiting to hear a claim from others and by
that way learning about the first key(s). A set of one key leads to a
claim that contains that key twice, an XOR sum of 0, and a span size
of 1.

Algorithm 1 The ScuttleSync Anti-Entropy Protocol

1: 𝑒𝐿𝑠𝑡 ← 𝜖 ⊲ sorted list of elements
2: 𝑐𝑆𝑒𝑡 ← 𝜖 ⊲ pending contradicting claims
3: startRepetitiveTimer()

4: proc xorSum(𝑖, 𝑗) : ⊲ sum up given span
5: return reduce(𝑥𝑜𝑟, 𝑒𝐿𝑠𝑡 .𝑠𝑢𝑏𝑙𝑖𝑠𝑡 (𝑖 𝑡𝑜 𝑗))

6: proc mkClaim(𝑖, 𝑗) : ⊲ create 4-tuple claim
7: return ⟨𝑒𝐿𝑠𝑡 [𝑖], 𝑒𝐿𝑠𝑡 [𝑗], 𝑥𝑜𝑟𝑆𝑢𝑚(𝑖, 𝑗), 𝑗 − 𝑖 + 1⟩
8: ⊲ field names are: .lo, .hi, .sum, .cnt

9: proc ix(𝑒) : ⊲ get index of element e
10: return 𝑒𝐿𝑠𝑡 .𝑖𝑛𝑑𝑒𝑥 (𝑒)

11: onReceivedClaim (⟨𝑙𝑜, ℎ𝑖, 𝑥𝑠𝑢𝑚, 𝑐𝑛𝑡⟩) do
12: if 𝑙𝑜 ∉ 𝑒𝐿𝑠𝑡 then 𝑒𝐿𝑠𝑡 .𝑎𝑑𝑑 (𝑙𝑜)
13: if ℎ𝑖 ∉ 𝑒𝐿𝑠𝑡 then 𝑒𝐿𝑠𝑡 .𝑎𝑑𝑑 (ℎ𝑖)
14: sort 𝑒𝐿𝑠𝑡
15: 𝑐𝑆𝑒𝑡 .𝑎𝑑𝑑 (⟨𝑙𝑜, ℎ𝑖, 𝑥𝑠𝑢𝑚, 𝑐𝑛𝑡⟩)

16: onTimer () do
17: 𝑠𝑒𝑛𝑑𝐶𝑙𝑎𝑖𝑚(𝑚𝑘𝐶𝑙𝑎𝑖𝑚(0, |𝑒𝐿𝑠𝑡 | − 1)) ⊲ once per period

18: sort 𝑐𝑆𝑒𝑡 by the count field .𝑐𝑛𝑡

19: 𝑟 ← 𝜖 ⊲ set of claims to be retained
20: foreach 𝑐 ∈ 𝑐𝑆𝑒𝑡 do ⊲ smallest span first
21: if 𝑐 ==𝑚𝑘𝐶𝑙𝑎𝑖𝑚(𝑖𝑥 (𝑐.𝑙𝑜), 𝑖𝑥 (𝑐.ℎ𝑖)) then
22: continue ⊲ we are synced on this portion
23: if 𝑐.𝑐𝑛𝑡 > 𝑖𝑥 (𝑐.ℎ𝑖) − 𝑖𝑥 (𝑐.𝑙𝑜) + 1 then
24: 𝑟 .𝑎𝑑𝑑 (𝑐) ⊲ remember it
25: 𝑐 ←𝑚𝑘𝐶𝑙𝑎𝑖𝑚(𝑖𝑥 (𝑐.𝑙𝑜), 𝑖𝑥 (𝑐.ℎ𝑖))
26: 𝑠𝑒𝑛𝑑𝐶𝑙𝑎𝑖𝑚(𝑐) ⊲ ask for help, if not rate limited
27: continue

28: ⊲ we have larger or equal span size, must help
29: 𝑙𝑜 ← 𝑖𝑥 (𝑐.𝑙𝑜𝑤) + 1;ℎ𝑖 ← 𝑖𝑥 (𝑐.ℎ𝑖) − 1 ⊲ shrink
30: if ℎ𝑖 − 𝑙𝑜 < 3 then
31: 𝑠𝑒𝑛𝑑𝐶𝑙𝑎𝑖𝑚(𝑚𝑘𝐶𝑙𝑎𝑖𝑚(𝑙𝑜, ℎ𝑖)) ⊲ send two new keys
32: else ⊲ split interval in two
33: 𝑠𝑧 ← (ℎ𝑖 + 1 − 𝑙𝑜) 𝑑𝑖𝑣 2
34: 𝑠𝑒𝑛𝑑𝐶𝑙𝑎𝑖𝑚(𝑚𝑘𝐶𝑙𝑎𝑖𝑚(𝑙𝑜, 𝑙𝑜 + 𝑠𝑧))
35: 𝑠𝑒𝑛𝑑𝐶𝑙𝑎𝑖𝑚(𝑚𝑘𝐶𝑙𝑎𝑖𝑚(𝑙𝑜 + 𝑠𝑧 + 1, ℎ𝑖))
36: 𝑐𝑆𝑒𝑡 ← 𝑟

3.3 Operations
In the steady state of fully replicated sets, the periodic beacons
emitted by each node, or sent at peering time, will not trigger any
reactions (line 17 for the periodic sending and lines 21–22 for the
ignoring of matching claims).

Adding a new element to one replica will trigger a push wave
through the graph of reachable replicas. If a new key ends up as
the new lowest or highest key, they are automatically added to the
set and the same claim will be forwarded when the timer triggers
the next beacon message. One could also think about immediately
forwarding that new claim.

In case the new element lands in the middle of the sorted list of
keys, and was not pushed in some other explicit novelty message
type for optimization, the set reconciliation game will start.

Eventually, the node possessing a new key will receive claims
for smaller sets than its own. It will react by sending more narrow
claims (lines 28 and subsequent). If the shrunk span is small enough,
only one claim must be sent that will include the new key as one of
its boundaries (line 30). Otherwise the shrunk span is split in two
and two claims are sent. Note that one could also randomly choose
one of two subspans, limiting the chatter but increasing convergence
time.

The more subtle case is now a node that realizes that it lacks one
or more keys. This happens when observing that the locations of the
received claims’ border keys leads to a smaller span (line 23). It is
important that the inferior node records the claim from the superior
node and will repeatedly ask for help by sending its (knowingly
wrong) claim about the too short span. These (knowingly wrong)
claims act like ARQ messages for lossy channels wherefore it is
important to remember the claim that triggers them: Otherwise, the
chain of claims that narrow down the set difference will be broken
too often and convergence would take arbitrary amounts of time.
We therefore keep a list of pending “true” claims (lines 2 and 15).
Over time when we learn about the missing keys, they will become
matching claims (lines 21-22) and not be retained anymore.

Note that pending claims should be reacted to in the order of
increasing span size (line 18). This leads to always favoring a “race
to the bottom” with increasingly smaller span sizes. As we then
learn about new keys, several pending claims with larger span size
will automatically become matching claims and be removed from
the 𝑐𝑆𝑒𝑡 of pending claims. For performance reasons in a broadcast
medium it is also advised to limit reactions to only a few claims per
round in order to avoid NACK implosion.

Another subtle case is when two peers have the same amount
of keys in their sets but each node has one key that the other does
not have. In this case both nodes will help each other (line 28 and
subsequent) and send claims for their split spans. Our protocol has
no problem in having several “reconciliation dialogues” running in
parallel and in opposite directions.

4 IMPLEMENTATION AND FIRST
SIMULATION RESULTS

We have implemented the ScuttleSync protocol for Python, ESP32
(C++) and Android/Kotlin in order to synchronize Secure Scuttlebutt
logs among Smartphones, Laptops and small LoRa-capable embed-
ded devices. In all three cases the core event processing and message
generation logic shown in algorithm 1 fits in 50 to 150 lines of code,
depending in the chosen language. The protocol turned out to be
extremely robust, often permitting set synchronization and higher-
level log replication even when bugs were present or communication

A Connectionless Grow-Only Set CRDT Sep 7, 2022

channels only worked halfway. Speaking from practical experience
we are very satisfied with the protocol’s robust behavior.

In order to understand the scaling behavior we have started to
explore the runtime behavior also with simulations. This is work
in progress and has not reached enough maturity yet to be directly
compared to e.g., the extensive simulations in [9] and [4]. We never-
theless report on first observations.

The original delta-CRDT algorithm ([1]) serves as a baseline and
comparison point. As mentioned in the related work section, this
protocol assumes that connections are used for the state transfer
(which means that this transfer could take arbitrarily long to finish).
We modeled the necessary retransmission logic by enqueuing all
set elements at regular intervals: this strategy will recover packets
that were lost in a previous interval while permitting us to model the
reliability service without introducing node identifiers and their con-
nection state. Our ScuttleSync protocol is subject to the same packet
loss rate. The comparison is thus between delta-CRDT updates plus
an aggressive retransmission strategy of repeatedly queuing the full
set vs our exchange of selected claims.

The simulation was implemented in Python and assumes a ring
topology of eight nodes and set sizes from 32 to 1024. Four scenarios
were considered:

(1) “priming”: one node has the full set, all others need a copy
(2) “onboarding” one node lacks all keys, the others are in sync
(3) “fixing”: one node lacks one key
(4) “spreading”: keys are randomly assigned to one node

We report here on first findings regarding convergence time mea-
sured in number of communication rounds. All experiments were
run 200 times and the diagrams show the average values together
with a vertical bar that shows the range of values, for a specific con-
figuration. We chose the number of set elements as variable, ranging
from 32 to 1024 and doubling in each step. We show here the series
of experiments where packets were lost with a probability of 10%.

The performance of the delta-CRDT baseline algorithm is shown
as a thin blue line, the algorithm is configured to send out the full
grow-only set CRDT every 15 rounds. ScuttleSync runs once per
round according to algorithm 1 and its performance is shown as a
thick red line.

Starting with the easy “fixing” case, we see in Fig. 2 that delta-
CRDT always needs at least 15 rounds to find the single missing
key, sometimes even 30 rounds due to packet loss. ScuttleSync’s
performance is dependent on the set size, as it needs several rounds
to iteratively narrow down the span where in the sets that key is
missing.

In the “onboarding” scenario where one node starts with an empty
set, ScuttleSync is quite effective in filling up that, due to always
sending at least two new keys with each narrowed claim, although
packet loss can force ScuttleSync to go into finding single missing
keys, as the vertical bars show. Delta-CRDT needs either two or three
of its 15-round terms in order to compensate for the lost packets
(sending packets three times with 10% packet loss is probably a
suitable strategy).

The two surprising scenarios are the “priming” (one node has the
full set, all others are initially empty) and “spreading” (each key is
randomly assigned to one node, initially). In both cases it seems that
the informed set reconciliation of ScuttleSync really pays off.

0 1000
0

20

40

60

80

100
priming

0 1000

onboarding

0 1000

fixing

0 1000
0

20

40

60

80

100
spreading

Rounds until converged (delta=15, loss=0.1)

set size

Figure 2: Convergence time in rounds, assuming 10% packet
loss. Blue/thin: delta-CRDT, red/thick: ScuttleSync

These are first, preliminary findings that so far have mostly served
to tune some of ScuttleSync’s strategy knobs, such as how many help
requests to serve per round. More explorations are needed, especially
on the message complexity side (not shown here) where taming the
NACK implosion is a key concern for dense wireless networks.

5 DISCUSSION
The convergence protocol as presented above has no security mea-
sures: keys can be added by everybody and without control about
content (e.g., random bits instead of valid ED25519 identifiers).

In order to secure the protocol, either the protocol messages
would have to be encrypted and the trustworthy nodes share a key, or
claims would have to be signed and nodes would only accept them
if corresponding certificates can be validated. The later would have
the undesirable consequence that replicas would not be anonymous
anymore.

Regarding the protection against set pollution with random bits,
the set elements could be made larger than for example an ED25519
public key by mandating that the element contains the ED25519
key plus a self-signed certificate (as a proof that the key indeed
is cryptographically functional). In order to avoid that claims now
become very large, we suggest to use the hash of these extended set
elements in our reconciliation protocol, and to send the extended
elements only on request, in a new message type.

5.1 Out of Sync Compression Dictionaries
In our use case of using the grow-only set to represent a compression
dictionary, one concern was that different versions of the set will be
found and nodes would send index values that refer to different keys,
depending at which dictionary state the receivers are.

We solved this problem by introducing dynamic “port values”
that depend on a node’s grow-only set: the XOR sum of all keys is a
fingerprint that we use to derive a 7 Bytes wide port number. The
higher-level replication protocol sends its replication commands to
such a port number, using the sender’s state: only when the receiver

Sep 7, 2022 Christian Tschudin, University of Basel, Switzerland

has the same state, then the receiving ports will have been activated
and the message is received, while any message with another port
value will be simple ignored. With this mechanism, cliques of nodes
sharing the same CRDT progress will be able to talk to each other,
in parallel – there is no need to force a network-wide consensus
for compression to work. As a future optimization for reducing
the downtime due to divergent state one can envisage nodes that
remember past states, hence can continue to serve straggler nodes
while at the same time talking to nodes with more advanced states.

5.2 Optimizations
We already mentioned the introduction of a new “novelty” message
type that would be used to fasttrack the forwarding of new keys.
Only when the novelty push wave suffers from a packet loss would
the nodes have to trigger the set reconciliation functionality.

The claim message type could be complemented by a smaller
beacon message that only contains the XOR sum and the size of
the set replica, saving precious bandwidth because of the constant
repetition of these beacon messages. Only when a beacon message
is received that does not match the current set state, would full claim
messages be used.

In case of a claim with a span size of three, and the middle key
being the one that the recipient is lacking, this key can be directly
computed from the claim.

6 CONCLUSIONS
We showed a first fully connectionless CRDT protocol for wireless
settings where contact time can be too short for establishing con-
nection state and where replicas do not need an identifier. The later
property permits to add new replicas on the fly, without having to
inform other nodes. Having only a single message type, the com-
bined dissemination and set reconciliation protocol has been shown
to be simple, compact and efficient. We use the grow-only set as a
compression dictionary for the Secure Scuttlebutt replication proto-
col where the 32-Bytes ED25519 identifiers can now be replaced
by indices fitting in a few bytes. We implemented a tiny version of
the SSB protocol for the ESP32 processor, using 128 Bytes LoRa
frames, and also have implementations in Kotlin and Python.

While many efforts for decentralized software and data structures
strive for feature-richness and generality, we think that there is a
benefit in investigating bare-bones solutions, helping to sharpen our
understanding of decentralized communication and computation
principles with opportunities to collapse responsibilities currently
spread across multiple layers into simpler and more efficient proto-
cols.

ACKNOWLEDGMENTS
We would like to thank Erick Lavoie and the anonymous reviewers
for their useful comments on an earlier draft of this paper.

REFERENCES
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient State-Based

CRDTs by Delta-Mutation. In International Conference on Networked Systems
(NETYS 2015). Springer LNCS volume 9466, 62–76. https://doi.org/10.1007/978-
3-319-26850-7_5 arXiv:1410.2803

[2] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1994. Incremental Cryptog-
raphy: The Case of Hashing and Signing. In Advances in Cryptology — CRYPTO

’94, Yvo G. Desmedt (Ed.). Springer Berlin Heidelberg, 216–233.
[3] John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost. 2002.

Informed Content Delivery across Adaptive Overlay Networks. In Proceedings of
the 2002 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (Pittsburgh, Pennsylvania, USA) (SIGCOMM ’02).
New York, NY, USA, 47–60. https://doi.org/10.1145/633025.633031

[4] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão. 2019. Effi-
cient Synchronization of State-Based CRDTs. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 148–159. https://doi.org/10.1109/ICDE.
2019.00022

[5] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. 2011.
What’s the Difference? Efficient Set Reconciliation without Prior Context. SIG-
COMM Comput. Commun. Rev. 41, 4 (aug 2011), 218–229. https://doi.org/10.
1145/2043164.2018462

[6] Anne-Marie Kermarrec, Erick Lavoie, and Christian Tschudin. 2020. Gossiping
with Append-Only Logs in Secure-Scuttlebutt. In Proceedings of the 1st Interna-
tional Workshop on Distributed Infrastructure for Common Good. 19–24.

[7] Kevin Lewi, Wonho Kim, Ilya Maykov, and Stephen Weis. 2019. Securing Up-
date Propagation with Homomorphic Hashing. Cryptology ePrint Archive, Paper
2019/227. https://eprint.iacr.org/2019/227 https://eprint.iacr.org/2019/227.

[8] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Research
Report 7506. INRIA. http://hal.inria.fr/inria-00555588/

[9] Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. 2008.
Efficient Reconciliation and Flow Control for Anti-Entropy Protocols. In Proceed-
ings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware
(Yorktown Heights, New York, USA) (LADIS ’08). New York, NY, USA, Article 6.
https://doi.org/10.1145/1529974.1529983

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-319-26850-7_5
https://arxiv.org/abs/1410.2803
https://doi.org/10.1145/633025.633031
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1145/2043164.2018462
https://doi.org/10.1145/2043164.2018462
https://eprint.iacr.org/2019/227
https://eprint.iacr.org/2019/227
http://hal.inria.fr/inria-00555588/
https://doi.org/10.1145/1529974.1529983

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 The ScuttleSync Protocol
	3.1 Local Data Structure and ``Claims''
	3.2 Informal Description of ScuttleSync
	3.3 Operations

	4 Implementation and First Simulation Results
	5 Discussion
	5.1 Out of Sync Compression Dictionaries
	5.2 Optimizations

	6 Conclusions
	Acknowledgments
	References

