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Abstract

A rollup is a type of popular “layer two” scaling solution for slow-
but-secure blockchains like Ethereum. A rollup perfoms computation
of blockchain state updates off-chain but posts the inputs and the
data to the underlying blockchain in order to benefit from its security.
However, if rollup operators go offline, further state updates are no
longer possible through the rollup; instead, state updates to the layer
two state must be forced on the underlying blockchain. Such a mech-
anism is called an escape hatch as it allows state, and in particular
digital assets, to escape from an inoperative rollup. We review the
approaches from rollups developed by the community and highlight
potential issues. We also establish a wishlist of properties that an es-
cape hatch mechanism should have to be considered trustworthy and
compatible with decentralization.

1 Introduction

The limited throughput provided by blockchains like Ethereum has moti-
vated the design of scalability solutions for these systems [1]. These often
take the form of so-called called layer two (or off-chain) protocols. This
name comes from the fact that they are built on top of a blockchain, which
is called the layer one for an ecosystem [1]. In a nutshell, layer two protocols
allow transacting parties to utilize a high-throughput blockchain ecosystem
and only fall back to the underlying layer one if there is a need to dispute
behavior on the second layer (e.g., with respect to their cryptocurrency bal-
ances), interact with decentralized applications on layer one, or transact with
accounts on other layer two instances.
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There are several flavors of layer two protocols. The different design
patterns offer an interesting tradeoff between several crucial aspects such
as compatibility with the underlying blockchain, liquidity, collateralization,
security and privacy, among others (see e.g., [1]). Protocols that leverage
the notion of payment channels, which are generalized either in the form of
payment-channel networks or payment-channel hubs are popular on the Bit-
coin Network [2, 3, 4, 5]. Some layer two systems for Ethereum are based on
side-chains (see e.g., [6]) or the Plasma protocol [7]. Recently, rollups (also
called commit-chains [8]) have become a popular off-chain scaling solution for
Ethereum (and other blockchains). Rollups overcome data-availability issues
with Plasma (see e.g., [9, 10]), and also support smart contracts : automati-
cally executing programs. We consider layer one blockchains, like Ethereum,
that support smart contracts; such smart contracts are required to implement
rollups.

Rollups that support smart contracts are essentially middleware. They
often aim to mimic the behaviour of their underlying layer one, but may
change the semantics of some system calls and add or remove features. For
example, the Boba rollup intends to add support for calling off-chain ora-
cles in smart contracts deployed on it [11]. More generally, the StarkNet
[12] rollup will use the Cairo virtual machine, completely disjoint from the
Ethereum virtual machine, which powers its underlying layer one; this will
come will a host of new features, like additional cryptographic primitives
[13].

Several implementations of rollups have been deployed and are seeing a
growing number of users and transactions. Rollups come in two main flavors,
defined in Section 2: optimistic and zero-knowledge (ZK).

In this work, we focus on so-called escape hatches for rollups. An escape
hatch is method by which users of a rollup can recover digital assets or pro-
gram state from a rollup when the operators are offline. Escape hatches for
rollups are not required to deal with malicious operators as these are guarded
against by so-called fraud proofs (in optimistic rollups) or validity proofs (in
ZK rollups). However, if operators fail to publish updates to rollup state,
user assets (like cryptocurrencies or ERC-20 tokens [14]) may be locked in the
rollup system. These assets may be locked as the protocol no longer responds
to transactions to transfer these assets. Therefore methods to unlock these
funds — or more generally, transfer rollup state — are necessary to overcome
the initial hardships of newer systems and the dangers of untrusted rollup
operators. When a rollup is decentralized and anyone can act as an opera-
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tor, this requirement may disappear, but there are no decentralized rollups
operating at the time of writing.

Escape hatches have been underdeveloped in favor of advancing the core
technologies of these systems. Some rollups, like Optimism [15], have imple-
mented this feature. Optimism allows anyone to force a transaction to be
included into (and update) the layer two state; submitting a withdraw trans-
action in this manner provides an escape hatch. In other cases, like for the
StarkNet ZK rollup [12], escape hatches may need to be application specific
[16]. We argue that this feature is critical for users and is technologically
challenging.

For users, there are no guarantees in centralized systems that operators
will be online, despite their best efforts. In decentralized settings, there may
be incentive for liveness, but this may also be insufficient; if the operator
requires special hardware to generate a ZK proof, significant downtime may
be possible and capable operators may be in short supply.

On the technical side of things, even in limited settings, existing tech-
niques are not clearly applicable for a fully robust layer two. For example,
available cross-blockchain payment solutions such as atomic swaps do not
help the off-chain interoperability problem either since they require that both
sender and receiver are part of both systems [17].

As a result of hurried rollup adoption, the security implications of these
systems are not fully understood. While most rollup functionality aims to
be equivalent or at least compatible with the functionality of the underlying
layer one, this is not always the case. Early versions of the Optimism rollup
changed the semantics of computation by changing how the native cryp-
tocurrency was represented and could have resulted in minting additional
cryptocurrency [18]. Moreover, if such changes also impact how decentral-
ized applications are to be developed, as may be the case for escape hatches
on StarkNet [12], there may be new risks to end-users if the changes are not
well understood. Understanding the security implications of escape hatches
is an important part of understanding the security of rollups at large.

In this paper, we outline a framework for evaluating escape hatches on
rollups. We consider the approaches discussed by the community and high-
light potential issues. We establish a wishlist of properties that an escape
hatch mechanism should have to be considered trustworthy and to be com-
patible with decentralization, including decentralized governance. We em-
phasize that as middleware, rollups should have more features than their
corresponding layer one, not fewer.
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2 Preliminaries

We first introduce optimistic and zero-knowledge (ZK) rollups.
In an optimistic rollup, computation is assumed correct and users can

submit so-called fraud proofs to challenge incorrect computations. Optimistic
rollups operators are bonded so that they are incentivized to avoid losing
such challenges (i.e., they are incentivized to operate honestly and correctly).
Arbitrum is one example of an optimistic rollup [19].

Zero-Knowledge (ZK) rollups replace fraud proofs with so-called validity
proofs. In a ZK rollup, system operators execute a state transition within
a zero-knowledge proof framework (e.g., [20]) which generates the validity
proof: an artifact that proves that a particular function was executed with
particular inputs which resulted in the new state. The “zero-knowledge”
aspect of these proofs are sometimes helpful for privacy, but mostly these
systems are used because the proofs are also succinct. This property en-
ables the proofs to be verified in a fraction of the time required to run the
computation in the firt place, enabling verification directly on a layer one
blockchain. zkSync is an example of a ZK rollup [21].

A rollup can be broken down into several components. A rollup typi-
cally has a sequencer component, which is responsible for ordering layer two
transactions. Possibly separate, the rollup will have an executor, responsible
for executing the transactions on layer two. For ZK rollups, the rollup may
also have a disjoint prover, which generates a proof that the executor cor-
rectly computed the state update. Finally, the rollup will have various smart
contracts to interface with these components.

A sequencer orders transactions for the layer two. The source of these
transactions may be a user of the rollup or the layer one smart contracts of
the rollup. As a result, sequencers are responsible for cross-chain communi-
cation, and may be considered to be a blockchain bridge. A bridge is a system
or protocol for taking assets or blockchain state from one blockchain to an-
other. As cryptographic assets cannot be literally moved from one blockchain
to another, the bridge creates representations of assets on a source blockch-
cain on a destination blockchain. To avoid arbitrary minting of assets, bridges
have a smart contract on the source blockchain called the custodian, which
locks up the asset to be minted on the destination chain. Through an off-
chain communicator component, when assets are placed in the custody of the
bridge, the corresponding debt issuer on the destination blockchain mints a
representation of the asset in custody. The process can be reversed. Ad-
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Figure 1: Components of a bridge, in this case from Ethereum to the fictitious
“Another Chain” blockchain. The custodian (a smart contract on Ethereum)
holds funds, the communicator relays signals between blockchains, and the
debt issuer (a smart contract on Another Chain) creates representations of
assets held by the custodian. The custodian signals the communicator when
an asset is deposited in order to be issued on the destination blockchain, and
the communicator relays this by calling a function on the debt issuer contract
(or vice-versa, to move assets the other way).

vanced bridges can relay instructions to execute arbitrary functions on either
blockchain. Bridges are illustrated in Figure 1.

Escape hatches are considered to be part of rollup functionality (called
validating bridges) in [22]. Three important mechanisms are considered re-
lating to escape hatches:

• A “forced transaction inclusion” mechanism. This is primarily dis-
cussed in the context of censorship resistance, but we note that an
offline operator is akin to an operator who is censoring all transactions.

• A “value-transfer’s escape hatch” mechanism, which allows accounts to
withdraw digital assets through the aforementioned forced transaction
inclusion mechanism. This requires users to submit a transaction to
withdraw, and as such, cannot deal with transferring smart contract
state in general.

• A “smart contract functionality and enforced liveness” mechanism.
This is the most general form of escape hatches, and allows users to first
withdraw balances from smart contracts on layer two before invoking
the aforementioned value-transfer escape hatch. However, this may be
infeasible if those executions cannot be replayed via forced inclusion on
the layer one.

Ideally, the escape hatches we will discuss enforce a kind of liveness : the
property that every transaction will eventually execute [22]. For a rollup
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that satisfies the liveness property, escape hatches are not necessary. Thus
we will consider rollups which fail to be live, and discuss escape hatches in
their full generality, i.e., beyond mere asset withdrawal.

3 Idealized Properties

In this section, we highlight idealized properties for rollup escape hatch.
Many of these properties may not be feasible with off-the-shelf ideas and
may require novel solutions. For each property, we suggest some possible
approaches and we reference existing implementations. The reference imple-
mentations aim to justify particular approaches and allow others to under-
stand the existing technology when considering new methods. Table 1 lists
several rollups and their escape hatch mechanisms, which will be discussed
in the context of the following properties.

3.1 Basic Properties

Modular It may be beneficial to make escape hatches modular in order to
replace such a mechanism. For example, a forced transaction inclusion may
be simplest to implement and attractive for a first implementation but may
be replaced by more sophisticated approaches.

Secure Escape hatches should be reviewed and tested. Bridges are increas-
ingly targeted for exploitation as these systems hold more and more funds.
As an escape hatch may interact with the custodian, communicator, and
the debt issuer, there is a large surface area for attacks.

Correcting Escape hatches should not reintroduce the issues of escaping from
a rollup. The state should not be migrated to another blockchain where
another escape hatch may soon be required.

3.2 Support for Arbitrary State Escape

Ideally, more than a user’s balance should be exit-able. This is particularly
concerning as a user’s balance is not always clear. It is likely that users
may expect that a native currency on the rollup, like (wrapped) Ether, along
with any ERC-20 tokens, constitute a part of the user’s balance on the rollup.

6



Rollup Escape Hatch Mechanism
Arbitrum Nova [23]/One [24] Transact Using L1
Aztec [25] (Connect [26]) Propose Blocks* (ZK)
Boba Network [11] Transact Using L1
dYdX [27] Force Exit to L1
Fuel (v1) [28] Propose Blocks
ImmutableX [29] Force Exit to L1
Layer2.Finance [30] None
Layer2.Finance-zk [31] Force Exit to L1
Loopring [32] Force Exit to L1
Metis Andromeda [33] Transact Using L1
Optimism [15] Transact Using L1
Polygon Hermez [34] Force Exit to L1*
rhino.fi [35] Force Exit to L1
Sorare [36] Force Exit to L1
StarkNet [12] None
ZKSpace (ZKSwap) [37] Force Exit to L1
zkSync (v1) [21] Force Exit to L1

Table 1: Escape hatches for various layer two solutions according to
L2Beat.com [38] as of August 2022. We do not distinguish between so-called
Validium solutions and ZK rollups, as they are similar except that the former
is not required to store data on-chain along with their validity proofs.

However, this may omit state that a user considers as part of their balance,
explicitly or implicitly. For example, an explicit asset that may be a part
of the user’s balance are non-fungible tokens (NFTs). These NFTs may
be digital art or other assets that are to be bought, held, and sold, and
may be representations of deposits in DeFi protocols (e.g., as in Uniswap
V3 [39]). However, some DeFi protocols accept and record deposits using
address mappings rather than token issuance; in these cases, transferring that
record is also crucial for users to recover all of their assets. This may require
those applications’ invovlment in the exit process, i.e., support for arbitrary
transaction inclusion on the layer two. In short, exiting only fungible assets
does not allow a user to completely escape the system.

To avoid having to make distinctions regarding relevant valuable state
and irrelevant worthless state, the escape hatch should migrate any part of
state of the rollup (see also the “Global” of Sec. 3.5). Otherwise, a state
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Figure 2: Proposing new blocks in a rollup. Snapshot i, if it exists, contains
the state root (Merkle root). However, the data within the state is not
obvious. The transactions of block j may change the state, but the (non-
hashed) state updates are only known to someone verifying Snapshot k if they
know the pre-images for Snapshot i and watch the data in block j. Without
the non-hashed updates, it’s not only impossible to provide an incorrect
snapshot, but it’s also unclear what the state contains.

exit should include state that is locked in additional layers (like a rollup in a
rollup), games and applications that do not tokenize assets, or general data
for applications built on the rollup, and chosen by users according to their
needs.

The entries in Table 1 which allow new blocks to be proposed are the
most similar to this goal. In these cases, the data and state are not actually
moved; instead the chain continues to operate. In turn, data can be escaped
through the usual methods; in this way, such an rollup is always live though
the operator may change (see also Sec. 2 and Sec. 3.6). In [22], the authors
suggest that honest operators can appoint themselves in this kind of situation,
though the change of operators may be rate-limited. A rate-limited change
process is important to enable some level of consensus and prevent griefing
by always changing operators (and in turn, possibly system configurations).

However, not all rollups may wish to support this approach. Depending
on the type of ZK proof system used within a ZK rollup, the hardware
requirements to run a prover may be too much for end-users [40]. In times
of sequencer failure, it may be difficult or impossible to quickly source the
hardware (and configure it along with the proof generation software) required
to propose new blocks. In the optimistic setting, even being able to update
the last stateroot may be difficult. The state root commitment is known
as part of the design, the explicit state in the Merkle tree is not known (see
Figure 2). Without this information, it may be difficult to propose new blocks
(without being considered malicious). In this case, a full archive node may
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need to be sourced to collect the relevant data and rebuild the state, which
can take a long time. Moreover, the escape hatch itself will need to publish
the data for the state migration as it is used. Another approach that has not
yet been attempted is to consider cross-chain state machine migration (see
e.g., [41]) for duplication of state.

Rollups can handle the scenarios above from their outset by using a “per-
misionless set of executors” [22]. This approach would mean that a single
sequencer failure may not even be noteworthy, as others are able to imme-
diately play the part. However, this level of decentralization or coordination
likely adds to the overall complexity of the system.

3.3 Built-In

The escape hatch should not be optional and should require minimal effort
from third-party layer two application developers, if any. An escape hatch
which is application-specific means that for every application, user state must
be migrated. This decreases the likelihood that such an escape hatch is con-
gestion resistant as the number of applications on the rollup grows. However,
if every application has an escape hatch for all of their users, this may be
a middle ground between application- and-user specific escape hatches and
support for full state support on escape hatches.

All entries of Table 1 that support an escape hatch mechanism are built-
in. For the StarkNet rollup [12], the design of escape hatches are currently left
to applications developers aiming to build on StarkNet [16]. If application-
specific escape hatches are to be used, they should utilize efficient techniques
for state transfer; for example, NFTs can be transferred across chains effi-
ciently using wrappers [42].

3.4 (Transaction) Efficient

A mass-exit should be feasible even if the underlying layer one is congested.
A rollup that satisfies this property should also support exporting the en-
tire state (Sec. 3.5), as otherwise the exporting of specific state fields for
thousands of users will cause congestion on any layer one which is order of
magnitudes less performant than the inoperative layer two in question. One
can imagine that for every 1,000 users on a rollup are using 20 different ap-
plications, 1, 000 state fields will need to be exported manually. As a result,
for every such 1, 000 users and the current rate of about 15 transactions per
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second (tps) on Ethereum [43], there are 20, 000 transactions/15 tps ≈ 1333s
or about 37 minutes worth of transactions. These transactions are on top
of the usual transactions on Ethereum and may be poorly timed; for exam-
ple, they may need to exit during a gas war started by minting a popular
NFT. The ability to have state migrated even with a congested system likely
means that the escape hatch does not require a lot of transactions, so that
only a few transactions resulting in the state migration. This ensures that
even when gas wars are on, users can recover value. The invocation of escape
hatch functionality is likely to occur simultaneously among all users and ap-
plication when a rollup begins to censor transactions or becomes inoperative.

This property is satisfied by every solution in Table 1 which uses new block
proposition as an escape hatch mechanism. For entries which list “Transact
Using L1” (modify the state via execution on layer one) or “Force Exit to
L1” (force the rollup to execute a specific withdraw transaction), users may
have a more difficult time escaping during congestion on the underlying layer
one.

3.5 Global

The escape hatch should not be application specific. To maximize transaction
efficiency, the ideal escape hatch should transfer the full state of the rollup.
This may be difficult to implement and may be indistinguishable from a fork
of the rollup. However, this means that users do not need to specify balances
or state that they wish to exit, and individual applications are not required
implement specific escape hatch mechanisms.

This property is satisfied only by Fuel (v1) in Table 1 which uses new
block proposition as an escape hatch mechanism. Aztec is does not sat-
isfy this property, as [25] suggests that blocks that anyone can propose for
Aztec only include token withdraw transactions. Polygon Hermez aims to be
decentralized, allowing anyone to propose blocks [34].

However, one concern is that blocks may not be constructed fairly. De-
pending on who has the authority to propose the blocks, they may only
include transactions affecting the state that is of interest for the proposer.
To avoid this, a escape hatch mechanism could enforce that every state up-
date processes a “minimum number of transactions” [22]. In turn, this may
raise concerns related to gas use if there are limits within a block, but narrow-
ing the scope to some minimum number of escape transactions may mitigate
them. For example, blocks could be limited to transfer transactions (but not
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necessary to or from a particular set of addresses or applications). This is a
trade off with general block proposition which may more readily support full
state escape.

Since new blocks may unlock funds in the custodian, it may be simplest
to involve social components. Custodians of bridges may be implemented
so that ownership is changed via message signed by a multi-signature wallet.
As a result decentralized governance concerns are also escape hatch concerns.
Finally, to avoid new malicious operators (who are online but provide incor-
rect data). The use of suggest that “staked executors” to cover the cost of
challenges for malicious data is one approach [22].

3.6 Automatic & Live

The escape hatch should be always be automatically available under certain
conditions. A user should be able to trigger escape hatch functionality with-
out waiting for manual intervention, provided some conditions exist. These
are likely the proof of censorship or long periods of time between updates
from the rollup operator. A proof of censorship may be a receipt for a trans-
action submission which has not been executed even after a sufficiently long
time.

Moreover, once an escape hatch is opened, it should guarantee that every
escape-able transaction is eventually escaped on the underlying layer one. It
may be desirable to have the ability to open the escape hatch only after some
period of sequencer inactivity has been detected.

All entries in Table 1 except those without an escape hatch mechanism
satisfy this property. As an example, Optimism [15] provides a forced trans-
action inclusion system (see Sec. 2) to counter censorship and ensure that
(token-defined) value can be transferred. This is achieved through smart
contracts on Ethereum which forces their inclusion into rollup blocks after
some delay, through its Canonical Transaction Chain logic. For zkSync (ver-
sion 1) [21], a command-line tool exists to generate a proof of a forced exit
of funds from the zero-knowledge off-chain exchange.

4 Conclusion

We reviewed escape hatches for rollups and provided a quick overview of how
some rollups may support this feature. We established a list of properties for
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an idealized escape hatch before identifying some directions that may enable
these properties to be satisfied. It may be that any feasible escape hatch only
have a subset of these features. For example, an escape hatch which supports
global state escape may be at odds with one that is automatic. This is be-
cause a global state escape is akin to a network fork and may require social
consensus to determine several things, such as: where the new state is mi-
grated, the exact state to be migrated (in terms of layer two block numbers),
the development of new smart contracts, and crowd-sourced liquidity to facil-
itate the migration. Determining if these properties are mutually compatible
with each other is left to future work.

Our list of idealized properties may also be incomplete and the approaches
required to satisfy these properties may not be clear. Additional future work
includes considering involve novel solutions to satisfy these properties, and
to establish if any of these properties are infeasible, impossible, or require
unpopular ideas. Leveraging the role of a rollup as middleware for blockchain
ecosystems may be the most straightforward way to achieve these properties.
Choosing to prioritize some of these properties may provide rollups with
competitive advantages while also contributing to the increased security of
the ecosystem at large.
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