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Abstract
The novel blockchain generation of Byzantine fault-tolerant
(BFT) state machine replication (SMR) protocols focuses on
scalability and performance to meet the requirements of
distributed ledger technology (DLT), e.g., decentralization
and geographic dispersion. Validating scalability and per-
formance of BFT protocol implementations requires careful
evaluation. While experiments with real protocol deploy-
ments usually offer the best realism, they are costly and
time-consuming. In this paper, we explore simulation of
unmodified BFT protocol implementations as a method for
cheap and rapid protocol evaluation: We can accurately fore-
cast the performance of a BFT protocol while experimentally
scaling its environment, i.e., by varying the number of nodes
or geographic dispersion. Our approach is resource-friendly
and preserves application-realism, since existing BFT frame-
works can be simply plugged into the simulation engine
without requiring code modifications or re-implementation.

1 Introduction
The current transition towards Web3 presents many chal-
lenges in terms of scalability and performance of distributed
ledger technology (DLT). Proof-of-Work [23] is still widely
used today, even if it is not environmentally sustainable and
can often not meet the performance requirements of applica-
tions [7]. Consequently, coordination-based Byzantine fault-
tolerant (BFT) state machine replication (SMR) algorithms
experienced renewed research interest [3, 32] – resulting
in many novel BFT protocols with a focus on improving
scalability [9, 11, 24, 31, 36], or boosting performance under
geographic dispersion [5, 8, 20, 30].
It is a challenging endeavour to reason about the per-

formance and run-time behavior of these novel BFT proto-
cols. Research papers describing BFT protocols often con-
tain a thorough evaluation using large-scale deployments
that are conducted on cloud platforms like AWS, where ex-
periments deploy up to several hundred nodes (e.g., like
in [9, 11, 20, 24, 36] and many more) to demonstrate a proto-
col’s performance and scalability.

Evaluations using real protocol deployments usually offer
the best realism, but are costly and time-consuming. Thus,
a reasonable alternative for cheap and rapid validation of
BFT protocol implementations without the need for cloud
providers can be to rely on either emulation or simulation.

Emulation vs. Simulation. Emulation tries to duplicate the
exact behavior of what is being emulated. A clear advan-
tage of emulation is how it preserves realism: BFT protocols
still operate in real time and use real kernel and network
protocols. As examples serve Mininet [15, 19], which cre-
ates a realistic virtual network running real kernel, switch
and application code on a single machine, or Kollaps [14], a
decentralized and dynamic topology emulator.

In contrast to emulation, simulation decouples simulated
time from real time and employs abstractions that help ac-
celerate executions: Aspects of interest are captured through
a model, which means the simulation only mimics the pro-
tocol’s environment or its behavior. This has the advantage
of easier experimental control, excellent reproducibility (i.e.,
deterministic protocol runs) and increased scalability when
compared to emulation. As a potential drawback remains
the question of application realism since the model may not
fairly enough reflect reality. Examples of simulators include
ns-3 [26] and Shadow [16], which are both discrete-event
network simulators for Internet applications.

Evaluating BFT Protocols. BFTSim [29] is the first simu-
lator that was developed for an eye-to-eye comparison of
BFT protocols but it lacks the necessary scalability to be
useful for the newer “blockchain generation” of BFT proto-
cols (and apparently only up to 𝑛 = 32 PBFT [10] replicas
can be successfully simulated [34]). A more recent tool [34]
allows for scalable simulation of BFT protocols but it unfor-
tunately requires a complete re-implementation of the BFT
protocol in JavaScript. It also cannot make predictions on
system throughput. Kollaps [14] was used to reproduce AWS-
deployed experiments with BFT-SMaRt [6] and WHEAT [30]
but it is not sufficiently resource-friendly as it executes the
real application code in real-time, thus requiring many phys-
ical machines to conduct large-scale experiments.

Research Questions & Contributions. In this paper, we ex-
plore simulation as a method to evaluate BFT protocol im-
plementations, which leads us to the following two research
questions:

R1 What are properties of an ideal performance evaluation
tool for the “blockchain generation” of BFT protocols?

R2 Can simulations help us to reason about the behavior
of real BFT protocol implementations at a larger scale?

https://orcid.org/0000-0003-2754-9530
https://orcid.org/0000-0002-2815-5747


BFTSim [29] BFT Simulator [34] Kollaps [14] ns-3 [26] Mininet [15, 19] Phantom [17]
application layer realism ✗ ✗ ✓ ✗ ✓ ✓

realistic networking ✓ (high level model) ✓ ✓ ✓ ✓

scalability ✗ ✓ ✓ ✓ ✗ ✓

resource friendliness ✓ ✓ ✗ ✓ ✗ ✓

Byzantine attacker (only bengin faults) ✓ ✗ ✗ ✗ ✗

Table 1. Comparison of different emulators and simulators in the context of BFT protocol research.

Our contributions aim for supporting validations of novel
BFT protocol implementations for their practical deploy-
ments in large-scale DLT systems. We summarize our main
findings as follows:

• First, we compare existing simulators and emulators to
analyze properties of an ideal evaluation tool in the context
of BFT protocol research (Section 2). A key finding is that
the state-of-the-art is deficient as there is no resource-
friendly evaluation tool to predict the performance (i.e.,
latency and throughput) of BFT protocols at a larger scale.

• Further, we present a tool that automates large-scale simu-
lations of unmodified BFT protocol implementations using
the Phantom simulator [17] given a simple experimental
description. For the first time, experiments with existing
BFT protocol implementations can be effortlessly set up,
configured and fed into a simulation engine (Sections 3
and 4).

• We discovered that we can faithfully forecast the perfor-
mance of BFT protocols because performance eventually
becomes network-bound at a larger scale. Our evaluations
compare results obtained from simulations with measure-
ments of real protocol deployments (Section 5).

2 Related Work & Background
BFTSim [29] was the first simulator tailored for traditional
BFT protocols like PBFT [10] and Zyzzyva [18]. Since these
protocols were intended for only small groups of replicas, the
limited scalability of the simulator was at that time not an
issue. However, it makes BFTSim impractical for the newer
BFT protocols. BFTSim demands a BFT protocol to be mod-
eled in the P2 language [21], which is somewhat error-prone
when considering the complexity of, e.g., PBFT’s view change
or Zyzzyva’s many corner cases. Although BFTSim allows
the simulation of faults, it only considers non-malicious be-
havior and left the extension to more sophisticated attacks
for future work. It provides realistic networking using ns-2,
and is resource-friendly as it runs on a single machine.

Recently, Wang et al. [34] presented a BFT simulator that
demonstrated resource-friendliness, high scalability, and
comes with an attacker module which includes a pre-defined
set of attacks (partitioning, adaptive, rushing). The simulator
does not mimic real network protocols. Instead, it tries to
capture network characteristics in a high-level model where

messages can be delayed by some variable sampled from a (to
be defined) Gaussian or Poisson distribution. Like BFTSim, it
does not provide application layer realism and demands the
re-implementation of a BFT protocol in JavaScript. A further
drawback is that it cannot measure system throughput, and
is thus not suited for reasoning about system performance.

Further, related work also includes stochastic modelling of
BFT protocols [25] and validations of BFT protocols through
unit test generation [2].

There are simulators which are dedicated to blockchain re-
search, such as Shadow-Bitcoin [22], Bitcoin blockchain sim-
ulator [13], BlockSim [12], SimBlock [1], and ChainSim [33].
These tools mainly focus on building models that capture
the characteristics of Proof-of-Work and thus cannot easily
be adopted for BFT protocol research.

Further, there are tools to emulate or simulate distributed
applications: Mininet [15, 19] and Kollaps [14] are emulators
that allow creating realistic networks (running real Internet
protocols) and real application code with time being synchro-
nous with the wallclock. Naturally, both approaches provide
a high degree of realism, which comes at the cost of being
less resource-friendly. Mininet is not scalable, a problem
which was addressed later by Maxinet [35], which allows
Mininet-emulated networks to spawn over several physical
machines. Kollaps is a scalable emulator, but also requires
many physical machines for large-scale experiments. More-
over, ns-3 [26] is a resource-friendly and scalable network
simulator, but it requires the development of an application
model, and thus does not preserve application layer realism.
Phantom [17] uses a hybrid emulation/simulation archi-

tecture: It executes real applications as native OS processes,
co-opting the processes into a network and kernel simulation,
and thus can scale to large system sizes. Phantom preserves
application layer realism as real BFT protocol implementa-
tions are executed. At the same time, it is resource-friendly
and runs on a single machine. Through its hybrid architec-
ture, Phantom resides in a sweet-spot between ns-3 (pure
simulator) and Mininet (pure emulator): It still provides suffi-
cient application realism for the execution of BFT protocols,
but is more resource-friendly and scalable than the emulators
are.
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Figure 1. The Phantom architecture (high-level overview).

As shown in Table 1, there is no perfect solution for simu-
lating BFT protocols at scale yet. If we require both resource-
friendliness and scalability, which we think are necessary
characteristics to evaluate scalable BFT protocols in an in-
expensive way, then only the BFT Simulator of Wang et
al. [34] and Phantom [17] are viable options. Comparing
these two, we decided to build our evaluation toolchain on
top of Phantom, because it allows plug and play of BFT pro-
tocol implementations and can measure system throughput.

3 Preliminaries: Phantom
Phantom uses a hybrid simulation/emulation architecture, in
which real, unmodified applications execute as normal pro-
cesses on Linux and are hooked into the simulation through
a system call interface using standard kernel facilities [17].
In Phantom, a network topology (the environment) can be de-
scribed by specifying a graph, where virtual hosts are nodes
and communication links are edges. The graph is attributed:
For instance, virtual hosts specify available uplink/downlink
bandwidth and links specify latency and packet loss.
Each virtual host can be used to run one or more appli-

cations. This results in the creation of real Linux processes
that are initialized by the simulator controller process as
managed processes (managed by a Phantom worker). The
Phantom worker uses LD_PRELOAD to preload a shared li-
brary (called the shim) for co-opting its managed processes
into the simulation (see Figure 1). LD_PRELOAD is extended
by a second interception strategy, which uses seccomp for
cases in which preloading does not work [17].

The shim constructs an inter-process communication chan-
nel (IPC) to the simulator controller process and intercepts
functions at the system call interface. While the shim may
directly emulate a few system calls, most system calls are
forwarded and handled by the simulator controller process,
which simulates kernel and networking functionality (for
example the passage of time, I/O operations on file, socket,
pipe, timer, event descriptors and packet transmissions) [17].
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Figure 2. Our toolchain architecture for automating the
setup of simulation runs of BFT protocols with Phantom.

4 A Simulation Toolchain for BFT
Large-scale simulations of BFT protocols with Phantom re-
quire additional tooling support. This is mainly because of
the following reasons: First, Phantom requires the genera-
tion of realistic and large network topologies for an arbitrary
system size and the characteristics of their communication
links should ideally resemble real-world deployments. This
is crucial to allow realistic simulation of wide-area network
environments.
Second, we need aid in setting up the BFT protocol im-

plementations for their deployment, since bootstrapping a
BFT protocol in Phantom involves many steps that can be
tedious, error-prone, and protocol-specific. This means, for
instance, the generation of protocol-specific run-time arti-
facts like cryptographic key material, or configuration files
which differ for every BFT protocol.

Third, in the process of developing and testing BFT al-
gorithms, different combinations of protocol settings result
in numerous experiments being conducted. Since Phantom
simulations run in virtual time, they can take hours, depend-
ing on the host system’s specifications. For the sake of user
experience and convenience, we find it is necessary for exper-
iments to be specified in bulk and run sequentially without
any need for user intervention.
Fourth, we may want to track and evaluate resources

needed during simulation runs, such as CPU utilization and
memory usage.
Fifth, when Phantom produces results, they reside in the

file system and for convenience, we want to aggregate mea-
surements of several simulations and map these to diagrams
displaying to-be-specified metrics like throughput or latency.
These reasons led us to develop Delphi-BFT1, a tool on top
of Phantom to simplify and accelerate the evaluation of un-
modified BFT protocol implementations.

1Code open-source available at https://github.com/Delphi-BFT/tool.
3
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4.1 Architecture

Delphi-BFT is composed of several components (see Figure 2)
and follows a modular architecture, in that it is not tailored
to a specific BFT protocol, but is easily extensible.

Orchestrator. The toolchain is administered by an orches-
trator that manages all tools, i.e., for preparing an environ-
ment, configuring runtime artifacts for a BFT protocol, and
initializing a resource monitor. The orchestrator invokes
protocol connectors to set up a BFT protocol and loads ex-
periments description files which contain a set of experiments
to be conducted for the specified BFT protocol. Finally, the
orchestrator starts Phantom, as soon as an experiment is
ready for its execution.

Environment Generator. The environment generator cre-
ates network topologies as a complete graph for any system
size. The network topologies resemble realistic deployment
scenarios for a LAN or WAN setting. To create network
graphs with network links reflecting a realistic geographic
dispersion of nodes, the environment generator employs a
cloudping component, which retrieves real round-trip laten-
cies between all AWS regions from Cloudping2. This allows
the tool to create network topologies which resemble real
BFT protocol deployments on the AWS cloud infrastructure.

Protocol Connectors. For each BFT protocol implementa-
tion that we want to simulate, it is first necessary to cre-
ate protocol configuration files and necessary keys. Since
protocol options and cryptographic primitives can vary de-
pending on the concrete BFT protocol, we implement the
protocol-specific setup routine as a tool called protocol con-
nector, which is invoked by the orchestrator. A connector
must implement the methods build() and configure().
This way, it is simple to extend our toolchain and support
new BFT protocols, as it only requires writing a new protocol
connector (in our experience this means writing between
100 and 200 LoC).

Resource Monitor. The orchestrator initializes a resource
monitor to collect information on resource consumption (like
allocated memory and CPU time) during simulation runs
and also the total simulation time. The user can use these
statistics as indicators of a possible need for vertically scaling
the host machine and as rough estimates for the necessary
resources to run larger simulations.

Plotter. Results are stored on the file system by Phantom.
They can be aggregated and mapped to specific diagrams for
specifiable metrics like latency or throughput. For instance,
it can create diagrams that display the performance of a BFT
protocol for increasing system scale and aggregate several
simulation runs for an increasing system size 𝑛 (or any other
variable).

2See https://www.cloudping.co/grid.

Table 2. BFT protocols that we employed for our evaluation.

framework BFT protocol language repo on github.com
libhotstuff [36] Hot-Stuff C++ /hot-stuff/libhotstuff
themis [27] PBFT Rust /ibr-ds/themis
bft-smart [6] BFT-SMaRt Java /bft-smart/library

4.2 Configuration of Experiments

It is simple to support a new BFT protocol implementation by
writing a new protocol connector: The connector defines how
to build the implementation, configure it for deployment,
and how to interpret the measurements taken from replica
and client log files. Experiments are defined in experiment
description files (EDF) that specify both environmental and
protocol settings of an experiment divided in four categories:

• misc: general settings like duration of a simulation
• network: specifies bandwidth, latency, and packet loss.
Latencies can be uniform (useful in a LAN) or forWAN
experiments derived from the AWS latency map by
specifying locations and the number of processes to be
placed in each location like [’us-west-1’: 1, ’eu-west-1’:
1, ’sa-east-1’:1, ’ap-southeast-2’:1].

• replica: these are general or protocol-specific set-
tings, e.g., number of replicas, batch size, or size of
replies

• client: these are general or protocol-specific settings,
e.g., number of clients, request size, or sending rate

The EDFs are the input of Delphi-BFT, which then auto-
matically generates a sequence of corresponding Phantom
experiment files and network topologies. In our appendix,
we provide an example of an EDF that mimics one of the
HotStuff experiments.

5 Results
In this section, we investigate on our second research ques-
tion. We first use results from the HotStuff paper [36] to com-
pare our simulation results with real measurements and rea-
son about resource utilization of our simulations. Then, we
show that we can achieve realistic results under geographic
dispersion by simulating a WAN topology for BFT-SMaRt [6]
replicas. Further, we experiment with a Rust-based PBFT im-
plementation [27] to demonstrate compatibility with a third
programming language (see Table 2).

5.1 HotStuff at Increasing System Scale

In our first evaluation, we mimic the evaluation setup of the
HotStuff paper [36] to compare their measurements with
our simulation results. The setup consists of more than a
hundred virtual machines deployed in an AWS data center;
each machine has up to 1.2 GB/s bandwidth and there is
less than 1 ms latency between each pair of machines (we
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Figure 3. Performance of HotStuff and Simulated-HotStuff.
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Figure 4. Resource consumption of simulations.

use 1 ms in the simulation). The employed batch size is
400. We compare against two measurement series: “1024”
where the payload size of request and responses is 1024
bytes and “10ms” with empty payload, but the latency of all
communication links is set to 10ms. Our goal is to investigate
how faithfully the performance of HotStuff can be predicted
by regarding only the networking capabilities of replicas,
which manifests at the point where the network becomes
the bottleneck for system performance.

Observations. We display our results in Figure 3. The sim-
ulation results for the payload experiment indicate a similar
trend as the real measurements, where performance starts
to drop for 𝑛 ≥ 32. For a small-sized replica group, the net-
work simulation predicts higher performance: 200k tx/s. This
equals the theoretical maximum limited only through the 1
ms link latency which leads to pipelined HotStuff commit-
ting a batch of 400 requests every 2 ms. The difference in
throughput decreases once the performance of HotStuff be-
comes more bandwidth-throttled (at𝑛 ≥ 32). We also achieve
close results in the “10ms” setting: 80 ms in the simulation
vs 84.1 ms real, and 20k tx/s in the simulation vs. 19.2k tx/s
real for 𝑛 = 4; but with an increasing difference for higher 𝑛,
i.e., 84 ms vs. 106 ms and 19k.2 tx/s vs. 15.1k tx/s for 𝑛 = 128.
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Figure 5.Comparison of a real BFT-SMaRtWANdeployment
on the AWS infrastructure with its simulated counterpart.
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Figure 6. Simulation results of PBFT, BFT-SMaRt and Hot-
Stuff for 1 KiB request and response payload.

Resource Usage. Further, we investigate how resource uti-
lization, i.e. memory usage and simulation time, grows with
an increasing system scale. We run our HotStuff “10ms” sim-
ulations (which display a somewhat steady system perfor-
mance for increasing system scale) on an Ubuntu 20.04 VM
with 48 GB memory and 20 threads (16 threads used for sim-
ulation) on a host with an Intel Xeon Gold 6210U CPU at
2.5 GHz. We observe that active host memory and elapsed
time grow with increasing system scale (see Fig. 4). We think
it should be feasible to simulate up to 512 HotStuff replicas
with a well-equipped host (with, e.g., 64 GB RAM).

5.2 BFT-SMaRt under Geographic Dispersion

Next, we experiment with geographic dispersion of BFT-
SMaRt replicas, where each replica is located in a distinct
AWS region. Our experimental setup is thus similar to ex-
periments found in papers that research on latency improve-
ments [4, 5, 30]. We employ a 𝑛 = 4 configuration and choose
the regions Oregon, Ireland, São Paulo and Sydney for the
deployment of a replica and a client application each. We
run clients one after another, and client each samples 1000
requests without payload and measures end-to-end latency,
while the leader replica (in Oregon) measures the system’s
consensus latency. Further, we create an experiments de-
scription file mimicking this experiment and run it through
our simulation toolchain to compare our simulation results
with the real measurements.
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Observations. We notice that consensus latency is slightly
higher in the simulation (237 ms vs. 249 ms), and further, the
simulation results also display slightly higher end-to-end
request latencies in all clients (see Figure 5). The deviation
between simulated and real execution is the lowest in Oregon
(1.3%) and the highest in São Paulo (3.5%). A possible expla-
nation of the deviation may be the high jitter of wide-area
networks that is not fairly enough captured by the under-
lying network simulator. While we believe the degree of
realism is good enough for the purpose of rapid evaluation
of new BFT protocol implementations, further improvements
should be considered as part of the future work.

5.3 PBFT at Increasing System Scale

In this experiment, we run simulations with 1KiB request and
response payload with Themis [27] (a Rust-based implemen-
tation of PBFT) for an increasing system scale to compare
the results against our HotStuff and BFT-SMaRt simulation
results.
Observations. PBFT initially outperforms HotStuff, but

then its throughput decreases more swiftly (as can be seen
in the sharper curve in Figure 6). At 𝑛 = 128, PBFT achieves
up to 9.3k tx/s while HotStuff achieves up to 20k tx/s. Here,
BFT-SMaRt, which employs the same agreement pattern as
PBFT also achieves up to 9.2k tx/s throughput at similar
latency values.

6 Future Work

Extending Evaluations. For future work, we intend to ex-
tend our evaluations to more BFT protocols, in particular, to
evaluate the effectiveness of different communication strate-
gies, like Gosig [20] (gossip) or Kauri [24] (tree-based) and
compare them with the results obtained from Hot-Stuff (star-
based) and PBFT (clique). In particular, we can explore the
performance of these protocols under different network char-
acteristics and for an increasing system scale. A high-level
simulation model previously studied the effect of different
message exchange patterns of BFT protocols [28] but it lacks
applicability for reasoning about real system metrics.

CPU Model. We think a CPU model could improve simula-
tion results for evaluations of either (1) small sized replica
groups or (2) experiments with empty payload – in both
cases the CPU may be the dominating factor and not the
network. Up to now, we use Phantom only as a network
simulator and all computations, such as creating or verify-
ing signatures, take no time. It might be possible to capture
most of the computational work by only modeling a few
methods, in particular, the cryptographic primitives (like in
BFTSim [29]). Currently, Phantom plans the introduction of
a CPU model as a future milestone for development and we
will try to utilize it to improve our simulation results.

Attacker Model.Moreover, we have in view to introduce
an attacker model to reason about the impact of attacks on
system performance. For this reason, we seek inspiration
from the Twins [2] methodology, a recent approach for val-
idating BFT protocols: Twins is a unit test case generator
that can simulate Byzantine attacks by duplicating crypto-
graphic identities of replicas (which then leads to forgotten
protocol states, or equivocations) and it can be quite useful
in a simulator to explore a variety of attacking scenarios.
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Appendix

protocolName: hotstuff
protocolConnectorPath: ./ connectors/hotstuff.js
experiments:

- 128rep:
misc:

duration: 30 s
network:

bandwidthUp: 10 Gibits
bandwidthDown: 10 Gibits
latency:

uniform: true
replicas: 1000 us
clients: 1000 us

packetLoss: 0.0
replica:

replicas: 128
blockSize: 400
replySize: 1024

client:
clients: 16
numberOfHosts: 2
outStandingPerClient: 175
requestSize: 1024

Figure 7. Example of an experiment description file.
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